Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1502-1509, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277641

RESUMO

With the continuous advancement of nanotechnology, nanodevices have become crucial components in computing, sensing, and energy conversion applications. The structures of nanodevices typically possess subwavelength dimensions and separations, which pose significant challenges for understanding energy transport phenomena in nanodevices. Here, on the basis of a judiciously designed thermal photonic nanodevice, we report the first measurement of near-field energy transport between two coplanar subwavelength structures over temperature bias up to ∼190 K. Our experimental results demonstrate a 20-fold enhancement in energy transfer beyond blackbody radiation. In contrast with the well-established near-field interactions between two semi-infinite bodies, the subwavelength confinements in nanodevices lead to increased polariton scattering and reduction of supporting photonic modes and, therefore, a lower energy flow at a given separation. Our work unveils exciting opportunities for the rational design of nanodevices, particularly for coplanar near-field energy transport, with important implications for the development of efficient nanodevices for energy harvesting and thermal management.

2.
Nano Lett ; 20(8): 6091-6096, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628493

RESUMO

Radiation greatly exceeding blackbody between two objects separated by microscale distances has attracted great interest. However, challenges in reaching such a small separation between two plates have so far prevented studies below a separation distance of about 25 nm. Here, we report a study of radiation enhancement in the near-field regime of less than 10 nm between two parallel plates. We make use of bulk, rigid plates to approach small separation distances without the adverse snap-in effect, develop embedded temperature sensors to allow near-zero separation, and employ advanced sensing method to level the plates and approach and maintain small separations. Our findings agree with theoretical predictions between parallel surfaces with separations down to 7 nm where an 18000 times enhancement in radiation between two quartz plates is observed. Our method can also be used to explore heat transfer between other materials and can possibly be extended to smaller separation gaps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...